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Abstract. The portfolio selection problem is a crucial problem that every 

investor at individual or institutional level has to deal with. There is a vast amount 

of literature about systems designed to support portfolio management decisions 

with a large diversity in focus and approach. However, even if it is well known that 

all decisions depend on decision maker’s preferences, the preferences are not 

represented satisfactorily in most systems. In this paper, we propose a decision 

support system design for portfolio selection that relies on an optimization model 

with enhanced behavioural content based on the stochastic programming 

paradigm. The proposed system is capable of supporting loss averse investors in 

the complex task of selecting portfolios that are simultaneously optimal from the 

reward-risk viewpoint and suitable for investor’s specific loss aversion profile.  

Keywords: Decision support system, loss aversion, risk measure, utility 

function, portfolio optimization. 
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1. Introduction 
Modern optimization based decision support systems (DSS) endow the users 

with a wide range of competencies. Having at their core optimization models, they 
provide a powerful tool: the model formulation allows the mathematical 
representation of complex decision-making problems thus offering support in many 
domains of applications. The field of portfolio management has a high level of 
complexity because of the presence of uncertainty, and also because of the need of 
analyzing huge amount of data and operating in a short time. Therefore, the use of a 
DSS makes a high impact on decision-making since it improves significantly the 
quality of the solutions. Quantitative methodologies enhanced by the recent 
advances in information technology and computer science ensure this quality.  

Decision support systems for portfolio management. There is a vast amount 
of literature about the portfolio selection problem, see for example systems designed 
to support portfolio management decisions with a large diversity in focus and 
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approach. Because of the many new challenges arising from a more dynamic 
business environment and because of the increasing complexity of the decision 
situations, the traditional DSS have evolved into complex integrated decision 
support systems. Apart enriching the content of the three basic capability 
subsystems that characterize any DSS (the data management subsystem, the model 
management subsystem, and the user interface, see Turban et al., 2005), integrated 
DSSs have implemented new technologies. Thus, they take into consideration the 
modern business environment, for a thoroughly state-of-the-art on integrated DSSs, 
see Liu et al. (2009), Zaraté et al. (2014). Many DSSs are based on Multi-criteria 
Decision Making (MCDM) techniques. Some interactive multi-criteria DSSs are: 
ADELAIS - Siskos and Despotis (1989), MINORA - Siskos et al. (1993), MARKEX - 
Siskos and Matsatsinis (1993), FINEVA – Zopounidis et al. (1996), MUSA - Siskos 
et al. (1998), MIIDAS - Siskos et al. (1999), INVESTOR - Zopounidis and Doumpos 
(2000a), PREFDIS - Zopounidis and Doumpos (2000b). Some DSSs for portfolio 
management are focused on specific stages of the investment process. For example, 
the DSSs presented in Xidonas et al. (2011) and Fulga (2015) are focused on the 
portfolio optimization stage. The DSS proposed in this paper differs from the others 
due to the emphasis put on the modeling subsystem: investor’s preferences are 
taken into consideration, thus the DSS has an enhanced behavioral content. 

Loss aversion in portfolio selection. The portfolio selection problem is studied 
from a large variety of viewpoints, and many methods and approaches in which 
different attitudes toward risk were proposed, see for example Afreen Arif and 
Pakkala (2015), Rezaie et al. (2015), Fulga (2016a, 2016b), Borgonovo and Gatti 
(2013), just to name a few. The presence of loss aversion is well documented in 
literature: Kahneman and Tversky (1979) and Tversky and Kahneman (1992) have 
presented evidence that investors consider the deviations of their terminal wealth as 
gains and losses starting from a reference level, and they react differently to gains 
than to losses. Loss aversion refers to the fact that investors are more sensitive to 
losses than to gains, where the critical return level θ separates gains from losses. 
This threshold θ depends heavily on the investor's perception on his own financial 
situation and on how he interprets the present economic situation and relates to it. 
There is a variety of reasons triggered by real-life constraints explaining how one 
ends up having a critical level θ: some investors might violate lone contractual 
clauses (covenants) if their assets fall below a specified value; others face regulatory 
mandates which require a minimum level of reserves. Also, in the practice of risk, 
when asset levels fall under the critical threshold, fund managers are penalized - see 
for example Borgonovo and Gatti (2013) who investigated the consequences of 
including covenant breach in the risk analysis of large industrial projects, and 
provided an objective view on their effect and significance. 

Purpose of this paper. It is well-known that all decisions depend on 

decision maker’s preferences. But, although decisions are frequently influenced by 

the recommendations of computer-based DSSs, the preferences are not represented 

satisfactorily in most systems. In this paper we propose a DSS for portfolio 
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selection with enhanced behavioral content which is capable of supporting loss 

averse investors in the complex task of selecting portfolios that are simultaneously 

performant from the reward-risk view-point and suitable for their specific risk 

profile. The remainder of this article is organized as follows: in Section 2 we 

present the system architecture, and illustrate the main technical choices and the 

functional modules which implement the proposed methodological steps. In 

Section 3, we give the Mean-Risk model on which the Model Management 

Subsystem is based. Given investor’s loss-averse profile, we argue that the 

appropriate risk measure used is the Expected shortfall with loss aversion 

parameter θ, ESLAθ. The theoretical results from Theorems 1 and 2 are of great 

practical importance: for the case when the targeted expected return value is the 

critical return level θ, the two theorems show that under some mild assumptions 

the three models Mean-Variance, Mean-ESLAθ and EU maximization are 

equivalent. The use of the Mean-Variance model instead of one of the other two 

results in a significant shortening of computer overall runtime and increase in 

precision due to the very efficient toolboxes for Mean-Variance optimization. 

Concluding remarks from Section 4 end the paper.  

 

2. Methodological framework and system architecture 

Distinctive features of the proposed system related to the loss averse profile of 

DSS’ user.  

• One decisive element of the portfolio model that captures investor’s loss aversion 

is the risk measure used in the model. Given that the loss-averse investor’s main 

concern is related to the cases when the portfolio return falls under investor critical 

level θ, the risk measure used in the proposed system is the Expected Shortfall with 

Loss Aversion parameter θ denoted by ESLAθ and defined in Fulga (2016a). For 

fixing the ideas, let n be the number of stocks used to build portfolios. The key 

random inputs in the portfolio problem are the random vector of asset returns 

denoted by ( ) ( ) ( )( )
1

, ..., ,  ,
T

n
r rw w w w= Î Wr  or simply by r (we use bold 

symbols for vectors). The set Ω represents the set of future states of knowledge and 

has the mathematical structure of a probability space with a probability measure P 

for comparing the likelihood of future states ω. Let  R(x)= xTr be the return of the 

portfolio ä ,Xx  where X is the set of available portfolios defined as  and Rä
n

1  

is the vector with all components equal to 1. R(x) is 

a { }Rä 1,  ,
n T

X = = ³x x 1 x 0  random variable having a continuous probability 

density function (pdf) 
( )( ) R/,  

R
g r r Î

x
, induced by that of r. The probability of 

R(x) not exceeding r is given by the cumulative distribution function (cdf) 
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( )( ) ( ){ }
R

G r P R r= £
x

x  which is assumed to be continuous with respect to r. 

The definition of the risk measure ESLAθ of the return R(x) of a feasible portfolio x 

is as follows: ( )( ) ( ) ( )( ),ESLA R E R R
q

q= - £x x x  where it is assumed that 

( ){ } 0,P R q£ >x  see Fulga (2016a). 

• In the proposed DSS, the investment opportunity set from which the loss averse 

investor choses investor preferred portfolio is the efficient frontier obtained from 

solving the bi-criterial problem: 

( )( ) ( )( )( ), .min
X

E R ESLA R
q

Î

-
x

x x                                                                   (1)                                                                                                

which is referred to as Mean-ESLAθ model. 

• The method used to select one single preferred efficient portfolio from the entire 

Mean-ESLAθ efficient frontier relies on the utility function capturing investor’s loss 

aversion. Investor utility function is characterized by two parameters, the critical 

return level θ, and the coefficient of loss aversion λ used to capture the fact that 

losses are more painful than equivalent gains (even when the threshold θ is only 

slightly exceeded). In this paper, we consider an investor characterized by the 

logarithmic utility function with loss aversion 

( ) ( ) Rln 1 ,,  V r r r rl q
+

= + - - Îé ù
ë û                                                                 (2)                                                                                             

where { }max 0, .a a
+

=é ù
ë û   

We determine the preferred efficient portfolio (called optimal) based on the 

following procedure: firstly, we calculate the expected utility of returns 

( )( )( )E V R x  for all efficient portfolios x, and then we select the portfolio with the 

highest expected utility value. 

• Besides the elements related to the model, the system supports the user by having 

implemented many options in all subsystems: thus, investor’ loss aversion is fully 

taken into consideration in all phases.    

Decision support system architecture. The proposed system consists of the 

following components:  

(1) The Graphical User Interface is a user-friendly module that enables the user to 

handle easily the input and the output data, and exploit the optimization toolboxes. 

The windows and menus allow that the complexities of the system core to remain 

hidden to the user. 

(2) The Data Management Subsystem. The functions performed are as follows: 

(2a) Online connection to data servers. Currently, the server used is Yahoo! 

Financial for US stocks. The program is connected online to the server, retrieving 

permanently new data. 

(2b) Packing data in high level objects. The primary data is structured in objects, 
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ready to be used. For example, the downloaded data are organized in time series 

objects, made accessible by MATLAB environment through specific Toolboxes. 

(3) The Model Management Subsystem. 

(3a) The objective functions: the expected return of the portfolio ( )( )E R x  and the 

risk measure ( )( ).ESLA R
q

x  

(3b) The constraints. The model can incorporate several types of pre-defined 

constraints for portfolio assets such as linear and/or nonlinear equalities and 

inequalities, lower and upper bounds, budget constraints, group, group ratio and 

turnover constraints. The most common constraints encountered, mandatory for 

portfolio models are: 

- Budget constraint, 

- Diversification constraint, 

- Group constraints allowing specific sector preferences, 

- Group ratio constraints allowing a specific ratio between two groups, 

- Lower and upper bound constraints on portfolio weights, including short selling, 

- Capitalization adjustment,  

- Average Turnover Constraints – linear absolute value constraint that enforces an 

upper bound on the average purchase/ sells. 

(3c) Investor preferences are captured in the Mean-ESLAθ model and in the 

logarithmic utility function with loss aversion based on which the final choice is 

made. 

(3d) Scenario generation. In order to capture a broad specter of preferences, 

several methods for scenario generation are implemented in the proposed DSS. The 

method used to generate paths of future asset returns in our computational results is 

the Filtered Historical Simulation method briefly described in the sequel. For each 

of the n assets, we use a combination of ARMA(1,1) for the conditional mean and 

GARCH(1,1) for volatility. The standard residuals obtained from the application of 

the econometric model are filtered to generate a series of independent identically 

distributed standardized (i.i.d.) residuals and then bootstrapped. 

(3e) Portfolio selection methodology. Firstly, the Mean-ESLAθ efficient frontier is 

determined, and secondly the efficient portfolio with the highest expected utility 

value is selected as optimal solution. 

The proposed DSS differs from other systems by the following special 

contributions: 

(i) The system core relies on innovative methodologies for the portfolio selection 

problem and takes advantage of the computational power offered by high-

performance computing environment. This feature is particularly important for 

applications for which a huge amount of data should be stored, managed and 

analyzed. 
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(ii) During the critical phase of formulating the investment policy statement (and 

expressing investor investment objectives and constraints), the proposed DSS fully 

supports investor to model the preferences accurately. 
(iii) Due to its modular structure, the system can be extended to other problems 

that uses similar methodologies. 

(iv) The user can access the system by a user- friendly interface and modify 

parameters/settings according specific needs/preferences. 

(v) The optimization module is developed in MATLAB highly technical 

environment using object oriented programming. Thus, the objects, data structures, 

methods developed in specific toolboxes can be used as they are or they can be 

further developed to respond better to new demands. It uses advances in database 

structures, internet technology, client-server architecture, and cloud computing that 

are specific features of integrated DSS. 

The flowchart of the proposed methodology is graphically depicted in Figure 1. 

 

 

 
 

 Figure 1. Process flowchart of the proposed methodology. 
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3. Portfolio selection with loss aversion 

 
The model management subsystem is based on the Mean-ESLA θ model (1). 
The first step is the construction of the Mean-ESLA θ efficient frontier. This 
relies on solving the minimum risk model  

( )( ),min
X

ESLA R
g

q

Îx
x                                                                                                   (3)                            

( )( ){ }where .X X E R
g

g= Î =x x  We shall refer to this model as (ME).  

Varying γ in the range of the expected return, we obtain the Mean-ESLAθ 

efficient frontier. The second step of selecting one single preferred portfolio out 

of the frontier relies on the utility function (2) that captures investor’s loss 

aversion. 

 

3.1 Method used to elicit investor’s utility function with loss aversion 

There are several possible methods to elicit investor’s utility function. The most 
frequently used class of methods relies on laboratory experiments aiming to 
determine points of the utility function. There are various possible procedures for 
determining them. The general approach is as follows: the investor is asked to 
express his preferences for monetary gains and losses in several simple and 
hypothetical lottery situations. It is obviously inferred that the preferences expressed 
in the hypothetical setting will carry over to much more complex real world 
decision problems, including portfolio selection problems. The responses provided 
are then utilized to empirically estimate the individual's utility function: a fit of a 
function can be made, where usually a specific functional form is assumed, in our 
case (1), or an affine transformation of it. This method has a couple of advantages 
for the investors untrained in decision making under uncertainty: it uses simple 
lotteries that do not involve unintuitive probabilities. Moreover, it only needs 
relatively few questions to elicit a utility function.  

Experimental study. For determining the parameters of the utility function V, 
we use the midpoint certainty equivalent method, see for example Hens and Rieger 
(2010). The steps taken are the following:  

Step 1. We determine the range of expected returns for Mean-ESLA θ efficient 

frontier: ( ) ( )
max

min
; ,R RE E

é ù
ê ú
ë û

 where ( )
min

RE  is the expected return of the global 

minimum risk portfolio, and ( )
max

RE is the solution of the maximization  problem 

( )( ).max
X

E R
Îx

x  
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Step 2. We set ( )( )
min

10,V E R = -  ( )( )
max

1,V E R =  which is allowed because 

the utility function V is determined up to an affine transformation. 

Step 3. In the iteration step, the investor provides the certainty equivalent CE1 of 

the lottery 1L
%

 with the outcomes ( )
min

RE and ( )
max

RE  that each occur with 

probability ½. We find the utility value ( )
1

V CE  by applying the definition of the 

certainty equivalent:  

( ) ( )( ) ( )( ) ( )( )
max

min
1

1

1 1

2 2
4.5.V CE E V L V E R V E R= = ´ + ´ = -

%
 

The investor provides the certainty equivalent CE2 of the lottery 2L
%

 constructed 

with the outcomes ( )
min

RE and CE1 (or CE1 and ( )
max

RE ) both occurring with 

probability ½. We calculate analogously the value V(CE2):  

( ) ( )( ) ( )( ) ( )
min

2
2 1

1 1

2 2
7.25.V CE E V L V E R V CE= = ´ + ´ = -

%
 

Up to now, we have four data points ( )( )
1 min

, 10 ,P E R -  

( )( )
max

2
, 1 ,P E R + ( )

3 1
, 4.5 ,P CE -  and ( )4 2

, 7.25P CE -  that will be used to 

determine the utility function. Repeating these iterations we obtain more data 

points; in total, we have constructed 24 points 
1 24
, ..., .P P  These computations 

ultimately lead to the representation of the utility function by points. After fitting 

the utility function of the form ( )( )ln 1 ,a r r bl q
+

+ - -é ù +ë û  where 0,a >  and 

b Î R , on the points obtained 
1 24
, ..., ,P P  we find the parameters values , , ,a b l  and 

.q  Thus, we have found investor’s utility function with loss aversion  

( ) ( )ln 1 ,V r r rl q
+

= + - -é ù
ë û  with 10,l =  and 

3
10 10 ,q

-
= ´  that is 

represented graphically in Figure 2 together with the points 
1 24
, ...,P P  that lead to it. 

Repeating these iterations we obtain more data points – we have 

constructed 24 points. These computations ultimately lead to the representation of 

the utility function by points as seen in Figure 2. 
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Figure 2. Graphical representation of the logarithmic utility function 

 

 

3.2 Expected utility maximization under logarithmic utility with loss 

aversion 
Next, we consider the expected utility maximization model for an investor 

characterized by the logarithmic utility function with loss aversion V defined in (2). 
The values r of the portfolio return R(x) are usually small, around zero, and r  > −1, 

therefore we can use the approximation of second order ( ) 2
ln 1 2r r r+ -;  and 

work with ( ) 2
2U r r r rl q

+

= - - -é ù
ë û  which approximates the original utility V. 

The approximated utility of the portfolio return is 

( )( ) ( ) ( ) ( )2
2 .U R R R Rl q

+

= - - -é ù
ê úë û

x x x x We calculate its expectation: 

( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 2
2 2 ,E U R E R E R R E Rs l q

+

= - - - -é ù
ë ûx x x x x  

where 

( )( ) ( )( ) ( )( ) ( )( )( ).
R R

E R G rg r dr ESLA R

q

q q
q q q a q

+

- ¥

- = - = +é ù
ê úë û ò xx x

x x      

(2a) 
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In this case, the approximated expected utility (AEU)   model for a given level γ of 
the expected portfolio return  

( )( )( )max
X

E U R
g

Îx

x                                                                                                    (3) 

has the particular form: 

( )( ) ( )( ){ ( )( ) ( )( )( )2 2
max 2 .2

X

E R E R R ESLA R
g

q q
s l a q

Î

- - - +
x

x

x x x x         (3a) 

 

3.3 The case of normally distributed returns 
Markowitz’ (1952) Mean-Variance model at a given level γ > -1 of E(R(x)) is 

referred to as (MV) and is defined as      

( )( )2min .
X

R
g

s
Îx

x                                                                                                       (4)  

Next, we assume the vector of returns r normally distributed with vector of 

meansm and covariance matrix .S  Thus, the return R(x) is normally distributed, 

( ) ( ), ,R N m s:
x x

x where   2 TR x x x  is the portfolio variance and 

 
1 ,

,ij i j n 
   , ,ij i jcov r r   , 1, .i j n  

Theorem 1. Let ( ), .N S:r m  Then, the models (ME), (AEU), and (MV) 

considered at the same expected return level g q=  are equivalent in the sense that 

they provide the same optimal solution. 

Remark. Results in Theorem 1 are based on the Taylor approximation of second 

order of ln(1+r) around zero. This approximation performs well only if the 

realizations of the random variable R(x) are close to zero. When working with real 

data, the values might deviate from zero and thus the accuracy worsens. Numerous 

empirical studies using empirical distribution and the logarithmic utility have 

shown that the approximation of ( )( )( )ln 1E R+ x  by a function of ( )( )E R x  and 

( )( )2
Rs x  performs better if it is based on the second order approximation of 

Taylor series around ( )( ),E R x  see for example Markowitz (2014), Young and 

Trent (1969).  Let r > −1 be a possible value of the portfolio return R(x). The 

approximation of second order of ( ) ( )ln 1L r r= +  around m
x

 has the form 

( ) ( ) ( )( ) ( ) ( )
2

.2r LL r L L r m mm m m ¢¢-¢+ - +;
x xx x x

 

By taking the expectation we find: 
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( )( )( ) ( )
( )

2

2

1
ln 1 .

2 1

E L R m s

m

+ -

+

;
x x

x

x  

The utility function approximating the original utility V which uses the second 

order approximation of Taylor series around the mean will be denoted by .U
%

 Thus, 
the model  

( )( )( )max
X

E U R
g

Î

%
x

x                                                                                                    (5)  

denoted by ( ),AEU
%

 has the following form: 

( )( )( ){
( )( )

( )( )( )
( )( )( )}

2

2

2 1

.max ln 1
X

R

E R

ESLA RE R
g

q q
s

l a q
Î

+

- ++ -
x

x

x

x

x

xx          (5a) 

θ θ1 = 2.66·10-3 θ2 = 6·10-3 θ3 = 10·10-3 

Comp. MV ME AEU MV ME AEU MV ME AEU 

x1 32.98 30.47 32.80 32.97 32.97 32.73 8.65 5.72 7.45 

x2 0.12 0.46 1.15 0.07 0.06 0.68 0.00 0.03 0.03 

x3 14.81 6.71 11.18 0.16 0.15 1.17 0.00 0.00 0.03 

x4 3.37 6.57 6.69 0.14 0.12 0.89 0.00 0.00 0.03 

x5 14.82 11.99 14.65 14.46 14.45 13.23 0.03 4.04 0.26 

x6 12.22 19.61 10.70 21.18 21.28 14.57 28.03 27.38 29.82 

x7 13.19 10.13 13.19 28.44 28.40 29.98 33.00 32.96 32.96 

x8 0.07 0.01 0.68 0.07 0.06 0.72 0.01 0.00 0.03 

x9 0.24 0.02 1.06 1.87 1.86 4.15 30.28 29.68 29.33 

x10 8.18 14.03 7.90 0.64 0.64 1.88 0.01 0.18 0.06 

 

Table 1. Optimal portfolios weights expressed as percentages for three critical 

return values 

Theorem 2. Let ( ), .N S:r m  Then, the models (ME), ( )AEU
%

, and 

(MV) considered at the same expected return level g q=  are equivalent in the 

sense that they provide the same optimal solution.  
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3.4 Computational results 

To illustrate the equivalence between the three models under the specified 

conditions, we have chosen ten assets from the New York Stock Exchange whose 

returns distributions are close to the normal distribution. We have considered the 

case of the loss-averse investor characterized by the logarithmic utility with loss 

aversion (1) with 10l = , and three critical return thresholds. As expected, the 

compositions of the corresponding (ME), (AEU) and (MV) optimal portfolios are 

very similar (Theorem 1). The exact compositions expressed as percentages are 

presented in Table 1. The small differences observed in Table 1 are due to the fact 

that the theoretical results were obtained assuming the vector of returns normally 

distributed, but the distributions used are based on real data, so they are close to the 

normal distributions, but not matching exactly. 

 

4. Conclusions 
In this paper, we present an integrated methodological approach for 

portfolio optimal selection. The proposed DSS is focused on incorporation of 

individual investor’s loss aversion profile, but accommodates a great variety of 

preferences if other class of utility functions are used. It is developed in MATLAB 

highly technical environment using object-oriented programming. Thus, the 

objects, data structures, methods developed in specific toolboxes can be used as 

they are or can be further developed to respond better to possible new demands. 

The proposed DSS uses advances in database structures, internet technology, 

client-server architecture, and cloud computing that are specific features of 

integrated DSS. Regarding future improvements of the proposed approach, system 

could include the introduction of target risk to guide the decisions proposed by the 

system and match them with investor's risk profile. Additionally, it is well known 

that taking into account the opinions of experts might improve the solutions 

provided by the system, therefore using / selecting a group of experts based on 

historical performance could be beneficial. 

 

Appendix 

Proof of Theorem 1. We note that we can interpret 
( )( )

R
G q

x
 as a variable 

confidence level and denote it by 
( )( ) 0,1 .

R
G

q
q a= Î é ù

ë ûxx
 From the hypothesis we 

have ( ) ( ), .R N m s:
x x

x  Therefore, we have  

( )( ) ,1 2
q

q m sa -= F +
x xx

 where ( )
21

2

0

1
,  .

2

z
t

z e dt z
p

-

F = " Îò R  Moreover, 

let 
Z

g  be the pdf and 
Z

G  the cdf of ( )0;1 .Z N:  Thus, we have 
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( )( ) ( )( ), ,
Z

ESLA R g q Zq q qm s a a= - +
x x x x

x  where ( ),q Z
q

a
x

 is the Gaussian 

q
a

x
-quantile satisfying the condition ( )( ), .

Z
G q Z

q q
a a=

x x
 Since 

( ) ( )1
, ,

Z
q Z G

q q
a a

-
=

x x
 we have ( ) ( )( )( ) ( )1

,
Z R

q Z G G
q

a q q m s
-

= = -
x x x x

 and 

( )( ) ( )( ),
Z

ESLA R
q

m s y q m s= - + -
x x x x

x  where ( ) ( )/
Z Z

g z G z is denoted by 

( ),
Z

zy ( )for  with 0
Z

z G zÎ ¹R  and 

( )( ) ( )( )
1

.
Z Z

g
q

q m s q m sy
a

- -=
x x x x

x

 

Therefore, the model (ME) at a given level γ > -1 of the expected portfolio return 
becomes 

( )( ) ( )( )
( )( )

( )( )
min .

ZX

E R
E R R

Rg

q
s y

sÎ

ì üæ öï ï- ÷ï ïç ÷ï ç ï÷- + × çí ý÷ç ÷ï ïç ÷ï ï÷çè øï ïî þ
x

x
x x

x
 

Now the equivalence between the models (MV) and (ME) is immediate. Indeed, 

because for all feasible ,X
g

Îx  ( )( ) ,E R g=x  and ,g q=  we have  

( )( ) ( )
2

0 .
Z

ESLA Rq q s y q s
p

= - + = - +
x x

x  

Now it is clear that minimizing ( )( )ESLA R
q

x  over all X
g

Îx  is equivalent to 

minimizing the variance ( )( )2
Rs x  over the same feasible set, and thus the two 

models have the same optimal solutions. Inserting the expression of ( )( )ESLA R
q

x  

in the expression of ( )( )( )E U R x  (2a) we get 

( )( )( ) 2 2
.2 2

Z Z
E U R G

q m q m
l q m s y

s s
m m s

- -
- += - - -

æ öæ æ öö
÷ ÷÷ç ç ç÷ ÷÷ç ç ç÷ ÷÷ç ç ç÷ ÷÷ç ç çè øè è øø

x x

x x

x x

x x x
x  

Thus, the (AEU) model has the form 

( )( ) ( )( ){ ( )( ) ( )( )2 2
2max 2

X

E R E R R R
g

s l s
Î

- - - ´
x

x x x x  

( )( ) ( )( ) ( )( )}.
Z Z

G gq m s q m s q m s´ - - + -é ù
ê úë ûx x x x x x

 

But g q=  and, for ,X
g

Îx  the expected utility of the portfolio return reduces to 
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( )( )( ) 2 2
2 2 2 ,E U R q q s l s p= - - -

x x
x  and then (AEU) and (MV) are 

equivalent. 

Proof of Theorem 2. For ,X
g

Îx  we have: 

( )( )( ) ( ) ( )( )2
2

ln 1 .2 1
Z Z

E U R G g
q g q g q g

g s l s
s s s

q
- - -

= + - ++ -
æ æ ö æ öö

÷ ÷÷ç ç ç÷ ÷÷ç ç ç÷ ÷÷ç ç ç÷ ÷÷ç ç çè è ø è øø

%
x x

x x x

x

 

But γ = θ, therefore we get  

( )( )( ) ( ) ( )( )2
2

ln 1 2 1 2E U R q s l sq p+ - -+=
%

x x
x  

showing the equivalence between ( )AEU
%

 and (MV). 
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